
ar
X

iv
:2

50
4.

13
75

9v
1 

 [
cs

.C
V

] 
 1

8 
A

pr
 2

02
5

Fragile Watermarking for Image Certification Using

Deep Steganographic Embedding

Davide Ghiani1, Jefferson David Rodriguez Chivata1, Stefano Lilliu1, Simone Maurizio La Cava1,
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Abstract—Modern identity verification systems increasingly
rely on facial images embedded in biometric documents such
as electronic passports. To ensure global interoperability and
security, these images must comply with strict standards de-
fined by the International Civil Aviation Organization (ICAO),
which specify acquisition, quality, and format requirements.
However, once issued, these images may undergo unintentional
degradations (e.g., compression, resizing) or malicious manipu-
lations (e.g., morphing) and deceive facial recognition systems.
In this study, we explore fragile watermarking, based on deep
steganographic embedding as a proactive mechanism to certify
the authenticity of ICAO-compliant facial images. By embed-
ding a hidden image within the official photo at the time of
issuance, we establish an integrity marker that becomes sensitive
to any post-issuance modification. We assess how a range of
image manipulations affects the recovered hidden image and
show that degradation artifacts can serve as robust forensic
cues. Furthermore, we propose a classification framework that
analyzes the revealed content to detect and categorize the type
of manipulation applied. Our experiments demonstrate high de-
tection accuracy, including cross-method scenarios with multiple
deep steganography-based models. These findings support the
viability of fragile watermarking via steganographic embedding
as a valuable tool for biometric document integrity verification.

Index Terms—watermarking, image certification, morphing

I. INTRODUCTION

Nowadays, facial recognition (FR) technology plays a cru-

cial role in identity verification, serving as a fundamental

component in border control, secure identity management, and

forensic applications [1]. To enhance security and streamline

passenger processing, many countries have adopted electronic

passports (ePass), which store biometric data to enable accu-

rate and automated identity verification at border checkpoints.

According to the International Civil Aviation Organization

(ICAO) guidelines, facial images stored in machine readable

travel documents, such as ePass, must comply with strict

biometric standards to facilitate reliable authentication [2].

However, multiple factors can affect the reliability of these

systems, including compression artifacts, noise, or other dis-

tortions introduced during acquisition, transmission, or storage

[3]. In addition to these non-malicious alterations, the in-

creasing sophistication of image manipulation techniques has

introduced new security vulnerabilities that can compromise

the integrity of identity verification [4].

One of the most pressing threats is the morphing attack,

which leverages image synthesis techniques to blend facial

features of multiple subjects, generating realistic composite

images that can be falsely considered to belong to different

individuals [5]. This vulnerability is particularly critical in bor-

der security, where identity verification is based on comparing

a live subject with the ePass photograph. If a morphed image is

successfully enrolled in an ePass, both contributing individuals

can authenticate using the same document, bypassing security

checks [6], [7]. To mitigate the risks associated with morphing

attacks, Morphing Attack Detection (MAD) techniques have

been developed to differentiate between genuine and manipu-

lated facial images [8]. Despite significant progress, existing

MAD methods face challenges in terms of generalization

across novel morphing techniques, and adaptability to real-

world conditions of identity recognition scenarios [9], [10].

To address these limitations, researchers have investigated

proactive mechanisms that embed verification signals within

the image itself at acquisition time, ensuring integrity through-

out the document lifecycle. A promising direction involves ac-

tive authentication mechanisms that introduce integrity mark-

ers directly within an image to facilitate the detection of

manipulation. Among such techniques, digital watermarking

has been widely adopted in multimedia security [11]; however,

watermarking is designed primarily for copyright protection

and may lack the adaptability required for ePass applications,

where facial images must remain unchanged after issuance.

In parallel, deep learning-based steganography has recently

enabled the embedding of large amounts of data into cover

images with minimal visual distortion. Although steganog-

raphy is not designed for integrity verification, its capacity

and perceptual quality open opportunities for alternative use

cases. In this work, we hypothesize that steganographic models

can be repurposed to implement active integrity verification

mechanisms for facial images. Specifically, we propose a

fragile watermarking framework based on deep steganographic

embedding, in which any manipulation of the host image

degrades the embedded content, allowing post-hoc integrity

verification through reconstruction of a known marker.

The concealed image can only be retrieved through a

dedicated decoding process, which generates a revealed image.

Since the hidden data is embedded within the cover image, any

modification applied to such an image will inevitably affect
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the revealed image, therefore introducing artifacts that could

potentially provide a forensic indicator of tampering [12].

Despite its long history in multimedia applications, the use

of steganography-inspired embedding methods for forensic

integrity verification in ICAO-compliant biometric documents

has, to the best of our knowledge, yet to be explored. This

represents a novel direction in the fight against digital attacks

such as morphing: we hypothesize that tampering leaves subtle

but detectable fingerprints in the revealed marker.

In this regard, this study proposes a twofold contribution:

(i) assessing the feasibility of fragile watermarking via deep

steganographic embedding as a mechanism to verify the in-

tegrity of ICAO-compliant facial images, ensuring that any

post-issuance modifications, whether intentional or accidental,

can be detected; (ii) developing a classification model capable

of distinguishing between different types of alterations, such

as morphing, compression artifacts, and noise addition, based

on how these transformations affect the retrieved marker.

The aim is not to develop a novel steganographic method,

but rather to investigate whether standard steganographic mod-

els, when repurposed as fragile watermarking tools, inherently

offer resilience properties applicable to biometric image se-

curity. By examining how various manipulations impact the

fidelity of the revealed content, we explore the potential of

this approach for unauthorized modification detection.

The rest of this paper is organized as follows. Section II

reviews the current literature on steganography and water-

marking for digital images. Section III describes the proposed

approach. Section IV reports the experimental protocol em-

ployed to conduct our evaluation, while Section V reports the

obtained results. Finally, conclusions are drawn in Section VI.

II. RELATED WORK

Steganography and watermarking are both data hiding

frameworks that can be classified according to their tolerance

to image modifications [13]. While fragile approaches are

highly sensitive and signal any alteration in the host image,

robust methods aim to resist various manipulations, including

synthetic content generation such as deepfakes [14]. In the

context of ICAO-compliant facial verification, fragile mech-

anisms are preferable, as their universal sensitivity enables

the detection of any post-acquisition modification. This aligns

with the proactive nature of ICAO security requirements,

where even minor unauthorized alterations must be detected to

preserve the integrity of biometric documents. Following this,

it is important to distinguish how the information is embed-

ded and interpreted in the frameworks. Digital watermarking

typically relies on compact bitstrings embedded at predefined

locations or patterns. These are effective in robust scenarios

like copyright protection [15] or tamper detection [16], but

often lack interpretability when the watermarked image is de-

graded or tampered with. Conversely, modern steganographic

models enable the embedding of richer information, such as

entire images, directly into the visual structure of the host.

Originally developed for covert messaging, these techniques

can be repurposed for fragile watermarking. In particular,

any modification to the host image corrupts the embedded

payload, and this degradation can be visually observed in

the recovered content, providing actionable forensic indicators

of tampering. This repurposing is made possible by recent

advances in deep learning, which have significantly improved

the imperceptibility and recoverability of hidden information.

Architectures based on convolutional neural networks (CNNs)

[17], generative adversarial networks (GANs) [18], and au-

toencoders [19] have demonstrated high-capacity and visually

stable embedding and extraction, making them suitable candi-

dates for integrity verification in fragile settings.

III. PROPOSED APPROACH

The proposed approach introduces a fragile watermark-

ing mechanism, implemented through deep steganographic

embedding, to certify the authenticity of ICAO-compliant

facial images, ensuring long-term verifiability of photographs

used in official identity systems by embedding a hidden

integrity marker at the time of issuance. If the stego-image

remains unaltered, the embedded content can be retrieved

without distortion. Conversely, any modification to the stego-

image, whether due to standard image processing or deliberate

tampering, inevitably affects the extracted content. Our key

hypothesis is that different manipulations introduce systematic

and detectable artifacts in the recovered marker, which can

signal both the presence and nature of the transformation.

If these degradation patterns are consistent, they can serve

as a forensic cue for tamper detection and manipulation

classification. To evaluate this hypothesis, we define a three-

stage methodology (Figure 1):

1) A steganographic process E is applied to the ICAO-

compliant facial image (cover image) IC to embed a

secret marker image IS within it, producing a certified

watermarked image Istego:

Istego = E (IC , IS) (1)

The hidden image IS , imperceptibly hidden within the

cover image, acts as a fragile integrity marker, ensuring

that any future modification to the stego-image affects the

embedded content.

2) A set of controlled transformations T are applied to Istego
to simulate real-world manipulations:

It = T (Istego) (2)

The considered manipulations—resizing, compression,

noise, blur, sharpening, and morphing—reflect both com-

mon post-processing operations and intentional biometric

attacks. These transformations simulate real-world con-

ditions where an image might be altered after issuance,

allowing us to assess whether the hidden integrity marker

can act as a forensic signal.

3) A decoder D is used to extract the revealed image Ir from

the potentially modified image It:

Ir = D(It) (3)



Fig. 1: Overview of the proposed methodology, structured into three main phases: embedding, alteration and classification.

(a) (b)

(c) (d) (e) (f)

Fig. 2: Overview of the steganographic certification process

and its impact on image quality: a) original input image; b)

original secret image to be embedded; c) stego image gener-

ated using Steguz; d) secret image recovered from the Steguz

stego image; e) stego image generated using Stegformer; f)

secret image recovered from the Stegformer stego image.

If the stego-image remains unchanged (i.e., no transfor-

mation artifacts), the revealed image retains its expected

structure. However, when modifications occur, artifacts

emerge, reflecting the type and severity of the applied trans-

formation. To systematically analyze these distortions, we

introduce a classification model capable of distinguishing

between different manipulation patterns.

The proposed system assumes that the integrity marker is

present and matches the expected reference at verification

time. In scenarios where the marker is missing, mismatched,

or unrecoverable, the classification model may yield unreliable

outputs. Handling such cases requires a separate detection

stage, which is not addressed in the current work.

The next section presents the complete experimental

pipeline, detailing the embedding architecture, transformation

setup, classifier design, and evaluation criteria.

IV. EXPERIMENTAL PROTOCOL

A. Dataset

The goal is to assess the feasibility of our fragile watermark-

ing approach on facial images compliant with ICAO guide-

lines. Accordingly, we selected the Chicago Face Database

(CFD) [20]–[22], providing high-quality facial images of 827

men and women of varying ethnicity between the ages of 17-

65. Specifically, it includes a single ICAO-compliant image

per subject [23], with a 2444× 1718 resolution.

To prepare the data for embedding, each image was cropped

to a 1718 × 1718 square format, removing peripheral back-

ground while retaining the facial region. The cropped images

were then resized to 224 × 224 pixels to comply with the

input requirements of the steganography-based models used

for analysis. As the integrity marker, we selected the ICAO

logo, which was resized to 224×224 and embedded into each

subject’s facial image during the certification phase (Figure 2).

B. Steganography Models

As discussed in Section II, recent deep learning-based

steganography methods offer high-capacity and high-fidelity

embedding mechanisms. Although originally developed for

covert communication, these models can be repurposed for

fragile watermarking, enabling integrity verification through

the degradation of a hidden marker. To investigate the gener-

ality of our approach and support cross-model comparisons,

we selected two representative state-of-the-art methods. The

first, Stegformer [19], is a transformer-based autoencoder

architecture designed for dense image-to-image embedding.

The second, SteGuz [24], follows a more classical CNN-

based design. Both are evaluated as embedding engines for

our watermarking framework.

Stegformer: This model follows a U-Net-inspired archi-

tecture [25], where an autoencoder is used to encode a full

image into a cover image and reconstruct it upon decoding.

It includes a self-attention mechanism to enhance feature

preservation and embedding quality (Figure 2e-f).

SteGuz: This model uses symmetry-aware CNNs to perform

the embedding and recovery of a hidden image (Figure 2c-d).

The architecture includes a preprocessing block, an encoder for

information embedding, and a decoder for marker recovery. To

ensure that the embedding process maintains the visual fidelity

of the cover image, SteGuz introduces a custom loss function

based on two image similarity metrics:

• PSNR (Peak Signal-to-Noise Ratio), which quantifies the

ratio between the power of a signal and the power of cor-

rupting noise, reflecting the fidelity between two compared

images [26]. It is defined as:

PSNR(x, y) = 10 · log
10

(

MAX2

x

MSE(x, y)

)

(4)

where x and y are the original and reconstructed images

respectively, both of size m × n; MAXx is the maximum

possible pixel value of the image (255 for 8-bit grayscale



images); and MSE is the Mean Squared Error between x

and y, defined as:

MSE(x, y) =
1

mn

m
∑

i=1

n
∑

j=1

[x(i, j)− y(i, j)]2 (5)

In this formulation, x(i, j) and y(i, j) denote the pixel inten-

sities at position (i, j) in the images x and y, respectively.

The MSE measures the average squared difference between

corresponding pixels, and PSNR expresses the result in

decibel scale [27].

• SSIM (Structural Similarity Index Measure), which evalu-

ates perceptual similarity between two images by comparing

local patterns of pixel intensities normalized for luminance

and contrast [28]. It is computed as:

SSIM(x, y) =
(2µxµy +C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y +C2)
(6)

where µx, µy are the local means, σ2

x, σ2

y are the variances,

and σxy is the covariance between the two images. Constants

C1 and C2 are used to stabilize the division in case of weak

denominators.

C. Image Manipulations

To evaluate the resilience of the proposed integrity verifica-

tion mechanism, we apply a series of controlled manipulations

to the certified stego-image, simulating real-world modifi-

cations that may occur after issuance. These perturbations

include both unintentional degradations (e.g., compression,

resizing) and deliberate alterations (e.g., morphing, noise in-

jection), allowing us to assess their impact on the embedded

integrity marker. The exact parameters employed for each

manipulation are reported in Table I.

Compression: Images may undergo re-encoding during

digital storage or transmission, leading to quality degradation.

Additionally, compression artifacts often emerge when images

are processed through automated verification systems, where

scanned photos are stored or analyzed in varying formats. To

examine this effect, we apply JPEG and WebP compression,

controlled by the quality factor (QF ), where QF ∈ [80, 100].
Lower values introduce moderate compression artifacts, while

higher values result in minimal to no compression loss.

Resizing: ICAO-compliant images may be rescaled for

different document formats, online submissions, or storage.

To evaluate the resizing impact, each image is downscaled ac-

cording to a resizing factor (RF ), where RF ∈ [50%, 99.9%].
Higher values result in minor resizing effects; lower values

introduce severe downscaling, causing loss of detail. The

image is then restored to its original dimension to observe

potential degradation in the embedded marker.

Noise Addition: Low-bitrate encoding, repeated compres-

sion cycles, and scanning artifacts can introduce unwanted

noise, affecting the overall integrity of an image. We simulate

these effects using:

• Gaussian noise, where the standard deviation (σG) is

varied in the range σG ∈ [2, 32]. Low values introduce

minor pixel intensity variations, while high values lead

to strong noise artifacts affecting fine details.

• Salt-and-pepper noise, parameterized by a corruption

probability pair (PSP ), where PSP = (PSalt, PPepper).The

first value represents the probability of a pixel turning

white (Salt), and the second represents the probability of

turning black (Pepper). Higher probabilities create more

visible pixel corruption.

Blurring: Some post-processing techniques apply smooth-

ing to remove noise or artifacts, which may also interfere with

hidden data. We consider:

• Gaussian blur, which applies a weighted average of

neighboring pixels, progressively diffusing fine details

and potentially spreading steganographic patterns across

a wider area. The kernel size (KG) is selected from

KG ∈ {3, 5, 7, 9}, with larger values causing stronger

blurring.

• Median blur, which replaces each pixel with the median

of its surrounding values, preserving edges better than

Gaussian blur but disrupting embedded information by

altering local pixel distributions. The kernel size (KM )

is chosen from KM ∈ {3, 5, 7, 9}, where higher values

increase the filtering effect.

Sharpening: Certain document processing tools enhance

image clarity by artificially increasing edge contrast. The

sharpening intensity factor (SF ) is adjusted within the range

SF ∈ [0, 1]. Low values produce no visible sharpening,

while high values apply strong edge enhancement, which may

introduce artificial artifacts.

Morphing: Unlike previous transformations, which may

occur unintentionally, morphing is a deliberate biometric

attack designed to deceive identity verification systems. In

our study, we utilized FaceMorpher1, an open-source tool

based on facial landmarks to blend faces and create realistic

morphed images. The blending factor (αM ) controls the degree

of fusion between two source images; we set αM = 0.9
in our experiments, favoring the stego-identity while subtly

incorporating features of the second. Therefore, while the

outcome can be easily attributed to the most contributing

individual, the second still has the chance to pass the identity

verification [29]. This choice maximizes the attack success rate

for the first individual while maintaining plausible deniability

in border control scenarios thanks to an increased realism

compared, for instance, to αM = 0.5, which may produce

morphs too distant from either original biometric template.

D. Image Quality And Manipulation Assessment

To assess the impact of image manipulations on the em-

bedded integrity marker, we used three full-reference image

quality metrics: Peak Signal-to-Noise Ratio (PSNR), Struc-

tural Similarity Index Measure (SSIM), and Mean Squared

Error (MSE). The mathematical definitions of these metrics

are provided in Section IV-B. Here, the focus is on their

interpretation. PSNR and SSIM increase with image similarity,

1https://github.com/alyssaq/face morpher

https://github.com/alyssaq/face_morpher


TABLE I: Summary of applied image manipulations and exact parameter values.

Manipulation Class Manipulation Type Parameter Values # Samples

Compression
JPEG Quality Factor (QF ) 100, 99, 90, 80 3308
WebP Quality Factor (QF ) 100, 99, 90, 80 3308

Resizing Resizing Scaling Factor (RF )
99.9%, 97.5%, 95%, 90%,
85%, 75%, 65%, 50%

6616

Gaussian Noise Addition Gaussian Noise Standard Deviation (σG)
2, 4, 6, 8, 10,
16, 25, 32

6616

Salt & Pepper Noise Addition Salt & Pepper Noise Corruption Probability (PSP )
(0.01, 0.3), (0.03, 0.1), (0.1, 0.03), (0.3, 0.01),
(0.01, 0.01), (0.03, 0.03), (0.1, 0.1), (0.3, 0.3)

6616

Blurring
Gaussian Blur Kernel Size (KG) 3, 5, 7, 9 3308
Median Blur Kernel Size (KM ) 3, 5, 7, 9 3308

Sharpening Sharpening Intensity Factor (SF )
0, 0.001, 0.01, 0.05,
0.1, 0.5, 0.75, 1

6616

Morphing FaceMorpher Blending Factor (αM ) 0.9 6616

while MSE increases with distortion. An SSIM value close to

1 indicates high structural similarity; PSNR values above 50

dB typically correspond to minimal degradation. In contrast,

higher MSE values reflect stronger pixel-wise differences.

These metrics allow us to quantify how much the hidden

marker is degraded after manipulation, and to evaluate whether

an image has been altered (Figures 3 and 4).

E. Classification protocol

To train a model capable of identifying the type of ma-

nipulation applied to the image from the revealed secret, we

employed ResNet-50 [30], pre-trained on ImageNet [31], as

a backbone for feature extraction. We set the classification

problem to seven classes: compression, resize, blur, gaussian

noise, salt and pepper noise, sharpening and morph generation.

To perform the classification from the extracted embed-

dings, we concatenated a sequence of fully connected layers.

First, a linear layer reduces the dimensionality from 2048 to

512 units. Next, a ReLU activation function is introduced to

add non-linearity. Then, a dropout layer with an activation

probability of 0.5 is inserted. Finally, a second linear layer

reduces the output vector into the space of the target manip-

ulation classes.

To assess the reliability of the classification model, we

employed 70% of the user identities in the dataset (i.e., 578)

as the training set for fine-tuning and 30% as the test set

(i.e., 249). This allowed us to keep the manipulation classes

balanced in the training and test sets and to simulate a

real-world application context where the specific user face

information is not known in training.

We evaluated the classification performance through metrics

typically employed in pattern recognition: accuracy, precision,

recall, and F1 Score. To assess the ability to generalize across

different embedding models and under previously unseen ma-

nipulation conditions, we designed four evaluation protocols:

• Intra-stega and intra-manipulation scenario: both training

and test images are embedded using the same model and

subjected to the same types and strengths of manipulations.

• Cross-stega scenario: training and test images are embed-

ded using different steganography-based models, while the

manipulation types remain consistent.

It is important to highlight that while in a practical cer-

tification scenario, the embedding method would typically

remain fixed throughout the system lifecycle, the cross-stega

analysis can be useful to assess the generalizability and

robustness of the proposed manipulation detection approach.

In fact, it simulates potential real-world inconsistencies, such

as re-certification with a different method or interoperability

between systems using distinct embedding techniques. In ad-

dition, it provides information on the transferability of learned

features between embedding strategies, which is essential for

scalable or future-proof implementations.

Additionally, we applied two sub-protocols: 1) the first one,

called P8-8, involves training and testing on the same eight

variations of each manipulation type (e.g., levels of noise or

compression); 2) the second, called P6-8, , involves training on

six variations per manipulation type, while testing includes all

eight—introducing two never-seen-before variations for each

manipulation during testing.

V. RESULTS

In this section, we present the results obtained from the

previously described experiments. In Section V-A, we report

the results obtained by analyzing the impact of the modifi-

cations in the images employed on the integrity verification

process. In Section V-B, we discuss the capabilities of the

classification model in detecting unauthorized modifications

and distinguishing between different types of alterations.

A. Image quality and manipulation assessment results

To evaluate the feasibility of using secret image hiding and

recovery for manipulation assessment, we analyzed the quality

of the stego and recovered images before/after manipulations.

As shown in Table II, the average quality of the certified

images and the revealed images, quantified by SSIM, MSE

and PSNR, demonstrates that the distortion introduced by

the certifying watermark is minimal and that the recovery

processes produce high-fidelity outputs. This confirms that the

embedding and extraction mechanisms, even when relying on

different steganographic approaches (Steguz and Stegformer),

do not introduce significant artifacts in both phases. For

instance, the SSIM values remain above 0.92 for both mod-

els and stages, indicating that the certification and recovery



(a) (b) (c) (d)

(e) (f) (g)

Fig. 3: Recovered secret images examples using Steguz after

applying manipulations: a) JPEG compression (QF = 80), b)

Gaussian blur (KG = 7), c) Gaussian noise (σ = 8), d) resize

(RF = 85%), e) salt & paper noise (PSP = (0.3, 0.01)), f)

sharpening (SF = 0.5), g) morphing (αM = 0.9).

(a) (b) (c) (d)

(e) (f) (g)

Fig. 4: Recovered secret images examples using Stegformer

after applying manipulations: a) JPEG compression (QF =
80), b) Gaussian blur (KG = 7), c) Gaussian noise (σ = 8), d)

resize (RF = 85%), e) salt & paper noise (PSP = (0.3, 0.01)),
f) sharpening (SF = 0.5), g) morphing (αM = 0.9).

processes do not noticeably corrupt the final images and are

acceptable from a practical perspective. Comparing the two

models, Stegformer provided better performance considering

all the analyzed quality assessment metrics.

The impact of the manipulations on the secret image is,

instead, appreciable and is shown in Figure 5. In all three

metrics (SSIM, MSE, PSNR), manipulations such as Gaussian

noise, morphing, and salt-and-pepper noise result in a substan-

tial drop in quality. For example, the SSIM for morphing and

salt-and-pepper noise drops below 0.5 in several cases, with a

corresponding spike in MSE. These quality degradations are

not only measurable, but also visually perceptible (see Figures

3 and 4), confirming that the manipulations leave strong and

consistent fingerprints on the recovered secret image.

This behavior is the foundation for the proposed ma-

nipulation classifier. Despite being built on different design

principles (Stegformer aiming for generalization, and Steguz

for robustness) both models react similarly to post-embedding

manipulations, suggesting that the introduced artifacts are

sufficiently distinctive to be exploited for classification.

To support interpretation in practical deployments, we de-

TABLE II: Difference between original image and certified

image (task certifying) and between original and recovered

secret image (task recovery) in terms of SSIM, MSE and

PSNR. Values are mean ± standard deviation.

Task Model SSIM MSE PSNR

Certifyng
Steguz 0.9266 ± 0.0097 123.27 ± 33.49 27.37 ± 1.14
Stegformer 0.9696 ± 0.0035 7.23 ± 0.65 39.56 ± 0.40

Recovery
Steguz 0.9389 ± 0.0015 97.91 ± 3.51 28.23 ± 0.15
Stegformer 0.9508 ± 0.0013 35.35 ± 1.81 32.65 ± 0.23

Fig. 5: Effect of transformations on image recovery. Error bars

reflect variation within each manipulation type.

fine operational thresholds derived from the observed values in

the unaltered (certified) case. Specifically, images with SSIM

below 0.75 or PSNR below 22 dB are considered potentially

manipulated.

B. Classification Results

The classifier results reported in Table III show that ma-

nipulations can be detected by analyzing the recovered secret

image. The intra-stega results for protocol P8-8 demonstrate

that most manipulated samples (≥99.95%) are correctly clas-

sified. However, the effects of manipulations vary depending

on the embedding method used. In fact, the cross-stega results

show an average performance drop of about 25%.



TABLE III: Classification performance in intra-stega and

cross-stega scenarios (P8-8 sub-protocol).

Training set Test Set Accuracy Precision Recall F1 Score

Stegformer
Stegformer 99.96% 99.96% 99.96% 99.96%
Steguz 71.92% 77.97% 71.92% 68.99%

Steguz
Steguz 99.95% 99.95% 99.95% 99.95%
Stegformer 80.51% 86.16% 80.51% 77.35%

A more detailed analysis through both the P8-8 and P6-8

sub-protocols highlights that the degradation in the general-

ization capability is strongly influenced by the type of manip-

ulation applied, as shown by confusion matrices in Figure 6.

In particular, the classification is still reliable on manipulation

classes that generate well-defined and consistent structural and

chromatic visual patterns, such as morphing, sharpening, and

the addition of Gaussian noise. Most classification errors in

cross-stega scenario involve the salt & pepper noise class

being confused with Gaussian noise. Since these two types

of manipulation are quite similar, such errors are potentially

negligible in this application context.

Other manipulations often misclassified are resize and com-

pression. Specifically, samples altered through resizing are, in

some cases, misclassified as blurring. Regarding compression,

the recovered images tend to be misclassified as either blurring

or sharpening, depending on the method used.

In general, when comparing cross-stega P6-8 and P8-8

protocols, we observe that the performance drop primarily af-

fects the model trained on images generated using Stegformer.

In contrast, the model trained on Steguz maintains similar

performance across both protocols. The latter is, therefore, able

to generalize better on unknown variations.

In summary, the experimental results support the feasi-

bility of using fragile watermarking, implemented via deep

steganographic embedding, for image certification purposes.

The proposed classification model was able to reliably identify

the type of manipulation applied to the host image, even

in challenging scenarios such as cross-stega settings and in

the presence of unseen transformation variations. Despite the

architectural and functional differences between the embed-

ding models, the visual degradations produced on the revealed

integrity marker were distinctive enough to enable generaliza-

tion. This highlights the approach’s potential for integration

into real-world integrity verification pipelines, where robust-

ness, interpretability, and scalability are critical requirements.

VI. CONCLUSIONS

This work proposed a fragile watermarking framework for

integrity verification of ICAO-compliant biometric images,

based on deep steganographic embedding. A known visual

marker is embedded into the facial image and later recov-

ered to detect possible post-issuance manipulations through

visible degradation. We evaluated this approach in the con-

text of ICAO-compliant identity images, using two state-of-

the-art steganography-based embedding models. A range of

transformations, including compression, resizing, noise, and

morphing, were applied to test the sensitivity and diagnostic

value of the revealed marker. Beyond tamper detection, we

assessed the feasibility of classifying the type of manipulation

by analyzing patterns of degradation in the recovered image.

The findings demonstrate that steganography-based fragile

watermarking can provide not only binary integrity verification

but also actionable forensic information. To our knowledge,

this is the first study to assess the use of standard deep

steganographic models for this purpose in the context of

biometric documents. To our knowledge, this is the first study

to assess the use of standard deep steganographic models for

this purpose in the context of document integrity. Future work

will explore additional embedding architectures, extend the

method to other biometric modalities, and evaluate robustness

under adversarial conditions.
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