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Abstract

ICAO-compliant facial images, initially designed for se-
cure biometric passports, are increasingly becoming cen-
tral to identity verification in a wide range of application
contexts, including border control, digital travel creden-
tials, and financial services. While their standardization
enables global interoperability, it also facilitates practices
such as morphing and deepfakes, which can be exploited for
harmful purposes like identity theft and illegal sharing of
identity documents. Traditional countermeasures like Pre-
sentation Attack Detection (PAD) are limited to real-time
capture and offer no post-capture protection. This survey
paper investigates digital watermarking and steganography
as complementary solutions that embed tamper-evident sig-
nals directly into the image, enabling persistent verification
without compromising ICAO compliance. We provide the
first comprehensive analysis of state-of-the-art techniques
to evaluate the potential and drawbacks of the underlying
approaches concerning the applications involving ICAO-
compliant images and their suitability under standard con-
straints. We highlight key trade-offs, offering guidance for
secure deployment in real-world identity systems.

1. Introduction

Biometric face recognition is central to identity manage-
ment systems, particularly when secure and standardized
verification is required. The International Civil Aviation Or-
ganization (ICAO) defines detailed specifications for facial
image acquisition and formatting, which have been adopted
globally in Machine Readable Travel Documents (MRTDs)
such as biometric passports, and more recently in Digital
Travel Credentials (DTCs) [47, 69]. These standards are
also increasingly used in remote identity verification sys-
tems, including financial services, where face images are
employed to meet Know Your Customer (KYC) require-

ments [26]. While these standards ensure uniformity and
interoperability, their predictable structure can be exploited
to create manipulated yet compliant images through mor-
phing [13, 16], generative methods [78], and other image-
based spoofing strategies [14]. Furthermore, the long va-
lidity of ICAO images and the potential exfiltration through
data breaches and public dissemination raise concerns about
unauthorized reuse and biometric privacy [38, 49].

Presentation Attack Detection (PAD) is a common de-
fense against spoofing, but it operates only at capture time,
without any protection once the image has been extracted,
stored, or redistributed, and is limited by poor generalisa-
tion to novel attacks [48, 52, 55]. Moreover, they often
rely on additional sensors or computational modules, which
may reduce throughput in real-time scenarios such as border
control [7, 25]. To address these limitations, proactive data
hiding techniques have been explored for encoding and em-
bedding verifiable information directly into the image in a
controlled and application-specific manner [68]. These ap-
proaches aim to ensure integrity verification and traceability
independently of the acquisition environment [8].

Within this domain, digital watermarking and steganog-
raphy represent two established paradigms [68]. The former
is primarily used to assert integrity or provenance, while the
latter was traditionally developed to conceal auxiliary in-
formation for covert communication. Both techniques rely
on modifying the visual signal to embed data that can be
extracted later, typically without compromising the usabil-
ity or appearance of the host image. In biometric contexts,
these methods have been increasingly considered for em-
bedding integrity markers or identifiers that remain robust
under common transformations such as compression while
preserving recognition performance and visual conformity
with standard requirements [57, 86].

Recent advances in deep learning have significantly
improved data hiding methods [68], leveraging encoder-
decoder networks [87], generative adversarial networks
(GANSs) [83], transformers [88], invertible neural networks



(INNs) and diffusion models [72] to increase capacity, im-
perceptibility, and robustness. While some have been ex-
plored for biometric ID systems [44], no survey has yet ana-
lyzed their applicability to ICAO-constrained biometric im-
ages. Existing surveys typically address watermarking and
steganography from the perspective of general media secu-
rity, copyright protection, or covert communication without
considering the constraints imposed by biometric standards
and operational requirements.

This survey fills that gap by systematically organizing
and interpreting modern data-hiding approaches for post-
acquisition certification under ICAO constraints. Rather
than replicating existing empirical results, we extract and
recontextualize key insights from prior work, enabling a
new comparative understanding of the strengths, limita-
tions, and suitability of current methods in biometric certi-
fication scenarios. Specifically, we provide: (i) a taxonomy
of data hiding approaches categorized by robustness, archi-
tecture, and learning paradigm and their analysis in func-
tion of the risks associated with the real-world applications
of ICAO-compliant images; (ii) a comparative analysis of
recent watermarking and steganographic models based on
such application scenarios; (iii) a critical discussion of their
applicability for tamper detection and their potential role for
ICAO scenarios. Although the focus is on ICAO-compliant
images, the insights extend to other facial recognition sce-
narios, including, but not limited to, those based on differ-
ent imagery standards that impose comparable constraints.
This analysis provides practical recommendations for de-
signing secure systems by demonstrating that only a subset
of existing deep learning techniques meets the combined
requirements of imperceptibility, selective robustness, and
reliable blind extraction needed for ICAO certification.

The rest of this manuscript is structured as follows. Sec-
tion 2 revises the key biometric and technical specifications
of ICAO-compliant facial images and provides an overview
of their real-world applications, as well as the potential
threats and existing proactive countermeasures. Section
3 outlines the problem formulation, terminology, and key
properties of data hiding techniques to certify biometric
images. Section 4 highlights the limitations of traditional
data-hiding methods and explores modern learning-based
approaches for watermarking and steganography in biomet-
ric image certification. Section 5 compares the underlying
models, analyzing their potentialities and suitability in real-
world applications. Finally, conclusions and future direc-
tions are presented in Section 6.

2. ICAO Standards and Associated Threats

This section outlines the core biometric and technical
specifications of ICAO-compliant facial images, reviews
their deployment across real-world application domains,
and examines associated manipulation threats and current

Table 1. Summary of relevant ICAO Portrait Quality parameters
for facial images in MRTDs and DTCs [69].

Parameter Requirement Section in [69]
Inter-eye distance > 90 px (recommended 120 px) 524
Background Uniform, light-colored, without patterns 525

Lighting Uniform illumination, no strong shadows 5.2.6

Pose Full frontal, head vertically aligned 5.3.1

Facial expression Neutral expression, mouth closed 532
Saturation (printed) Non-background pixels with values 0 or 255 each <0.1% 6.3

Resolution 35 mm x 45 mm, scanned portrait > 300 dpi 6.4
Compression format JPEG (printed), JPEG2000 (logical storage) 6.5

proactive countermeasures.

2.1. ICAO Requirements for Facial Image Quality

Standardized facial image acquisition and encoding are
fundamental to ensure interoperability and security in inter-
national identity verification systems. To this end, [CAO de-
termines facial images as the primary biometric in MRTDs
and DTCs, as detailed in Document 9303, Part 9 [31]. The
standard focuses on organizing biometric data within the
Logical Data Structure (LDS) and mandates conformance
to ISO/IEC 19794-5 [1], later refined by ISO/IEC 39794-5
[2], for the encoding of facial image data.

However, ICAO Document 9303 does not prescribe spe-
cific quality criteria for image acquisition, such as resolu-
tion, compression format, or subject pose. These opera-
tional aspects are addressed separately in the ICAO Tech-
nical Report on Portrait Quality (Version 1.0, 2018) [69],
which provides best practice guidelines to ensure that cap-
tured portraits meet the operational needs of both automated
and human identity verification processes. Table 1 summa-
rizes the key parameters relevant to ICAO-compliant facial
images. Within the ICAO documentation, the normative
strength of each requirement is explicitly indicated: “shall”
designates binding obligations, “should” denotes recom-
mended best practices, and “may” identifies optional ele-
ments. This structured terminology balances technical con-
sistency enforcement and operational flexibility.

While the standardization improves interoperability and
comparison performance, it also introduces a highly pre-
dictable acquisition model. Adversaries can exploit the
known constraints to synthesize or manipulate facial images
that formally satisfy compliance checks, thereby increas-
ing the difficulty of detecting fraudulent identities in critical
verification workflows. The implications of these vulnera-
bilities and their impact on real-world identity systems are
analyzed in the next section.

2.2. Real-World Applications and Associated Risks

ICAO-compliant images, originally developed for pass-
port standardization, are now fundamental in governmental,
financial, and commercial identity systems. In the travel
sector, ICAO-compliant portraits enable Automated Border
Control (ABC) through facial recognition using the biomet-
ric template stored in their electronic passports [26]. DTCs



are a digital extension of passports, allowing travelers to
store their identity on mobile devices [19, 62], while still
requiring ICAO-compliant facial images for global inter-
operability [50]. Beyond aviation, ICAO-compliant im-
ages are widely used in finance for biometric verification
in KYC and onboarding, ensuring interoperability and ac-
curacy even in remote authentication [24, 61]. In addition,
mobile identity systems and digital wallets increasingly rely
on ICAO portraits to support secure user verification in di-
verse application ecosystems.

Although the operational benefits of standardization are
evident, the predictability and stability of ICAO-constrained
formats increase the exposure to several attack vectors. In
addition to typical concerns associated with facial biomet-
rics, such as aging effects and privacy risks [21, 37], iden-
tity verification systems are increasingly challenged by so-
phisticated presentation attacks [13]. For instance, morph-
ing attacks, in which facial features from two individuals
are blended to create a synthetic identity, can evade human
inspection and automated recognition if compliance con-
straints are respected [16]. Similarly, deepfake techniques
based on generative models can produce realistic [CAO im-
ages that embed fraudulent identities [78].

In parallel, the extension of ICAO standards beyond tra-
ditional passport systems further amplifies systemic expo-
sure. In the context of DTCs, biometric data stored on mo-
bile devices become vulnerable to compromise in device
breaches [49, 54]. Similarly, financial institutions manag-
ing biometric databases for identity verification represent
attractive targets for cyberattacks if proper security mea-
sures are not enforced [38, 59].

Therefore, this combination of acquisition predictability,
mass distribution, and extended operational validity under-
scores the need for protection mechanisms that persist be-
yond the moment of capture.

2.3. Need for Proactive Protection Mechanisms

PAD is the primary defense against biometric spoofing,
analyzing cues like texture inconsistencies, motion artifacts,
or liveness to detect falsified traits at the point of capture
[56]. Despite increasing sophistication, its protection is lim-
ited to acquisition event. Once the image is stored or trans-
mitted, PAD offers no safeguard against tampering, syn-
thetic alterations, or unauthorized redistribution [7, 55].

In application scenarios involving ICAO-compliant im-
ages, where biometric data may circulate across decentral-
ized infrastructures and remain valid for extended periods,
the absence of persistent integrity verification becomes a
critical vulnerability. Traditional cryptographic techniques
can secure the transmission but offer no guarantees once ac-
cess to the content is obtained. Proactive security strategies
have been proposed to address this gap by embedding ver-
ifiable integrity markers directly within the biometric con-
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Figure 1. General scheme of a data hiding system.

tent. Unlike capture-time defenses, embedded signals per-
sist across the image lifecycle, enabling post-hoc verifica-
tion of authenticity and tamper-evidence. Among the can-
didate approaches, data hiding techniques offer promising
solutions to enhance the resilience of ICAO-compliant fa-
cial images without compromising their usability for visual
inspection and automated recognition [8, 57]. Accordingly,
the following section surveys the fundamental data-hiding
methods, focusing on their design principles, embedding
strategies, and relevance to biometric integrity protection.

3. Data Hiding for Biometric Image Certifica-
tion

This section provides the necessary background on data-
hiding techniques for biometric image certification, present-
ing the problem formulation, key terminology, and fun-
damental properties that guide the following evaluation of
such systems in ICAO-compliant contexts.

3.1. Problem formulation and terminology

The certification of ICAO-compliant biometric images
requires embedding security-relevant information directly
into the image content, in a manner that preserves its op-
erational usability for recognition and document issuance.
In this framework, the data hiding process is modeled by
two functions: embedding and extraction (Figure 1). Given
a cover image C and a secret message M, the embedding
function E(-) generates a container image C’ according to:

C' = E(C,M) (1)

where C’ should maintain a high degree of visual and bio-
metric similarity to C. The hidden message is subsequently
recovered via a decoding function D(+), producing an esti-
mate M:

M = D(C) 2)

Throughout this work, we consider data hiding meth-
ods whose design and evaluation are driven by the spe-
cific needs of biometric certification, rather than by general-
purpose communication or copyright protection scenarios.
Based on their operational goals, these methods can be cat-
egorized into two broad functional classes:

e Digital watermarking: these methods embed informa-
tion to assert properties such as authenticity, integrity,
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Figure 2. Comparison between: a) original input image; b) water-
marked image obtained with [76] (PSNR = 45.813, SSIM =
0.9861 for 1 bpp) ; c) steganographic image obtained with [35]
(PSNR = 39.562, SSIM = 0.9699 for 24 bpp).

or provenance of the cover image. The embedded data
is expected to survive benign transformations and re-
main detectable, thus enabling certification even after
typical processing such as compression or scaling.

o Steganography: these methods aim to conceal the ex-
istence of the embedded information, maximizing im-
perceptibility and minimizing detectability. In the con-
text of biometric certification, steganographic tech-
niques can be reinterpreted to embed fragile integrity
signals that, while remaining imperceptible, are dis-
rupted by malicious modifications.

The choice between watermarking and steganography
depends on the threat model and operational requirements.
Watermarking is typically preferred when persistent verifi-
cation across benign transformations is desired. Conversely,
steganographic embedding may be advantageous when the
primary goal is the detection of unauthorized alterations
without introducing perceptible changes.

3.2. Key Properties of Data Hiding Systems

Several characteristics and structural properties define
data hiding methods in biometric certification contexts, af-
fecting usability, transparency, and extraction requirements.
In the following, we describe the most relevant properties
[68]: Embedding visibility: Data hiding techniques can pro-
duce either visible or invisible embeddings. In visible em-
bedding, the presence of the hidden information is percepti-
ble to human observers, serving as an overt signal. Invisible
embedding seeks to maintain the perceptual indistinguisha-
bility between C and C’, minimizing the risk of detection.

Blind vs Non-Blind Extraction: In blind data hiding sys-
tems, the decoding function D(-) operates exclusively on
the container image C’, requiring no access to the original
cover C or any external auxiliary information. Formally:
M = D(C’). In non-blind systems, successful extraction
depends on additional side information, typically the orig-
inal cover image C, leading to a decoding function of the
form: M = D(C/, C).

Cover-Based vs Coverless Embedding: Cover-based ap-
proaches start from a given cover image C and embed the

message M to produce C’. Coverless approaches, in con-
trast, generate C’ directly conditioned on M without rely-
ing on an existing cover.

Invertibility: Invertible data hiding methods allow the si-
multaneous recovery of the embedded message M and, op-
tionally, the original cover image C from the container C'.

Security: A secure data hiding method must prevent
unauthorized detection or extraction of the embedded data.
Adversaries may attempt to detect the presence of embed-
ded data via steganalysis techniques or to decode it without
access to the original embedding process or keys.

Fragility and Robustness: The resilience of the embed-
ded message against transformations determines if a method
is classified as fragile, semi-fragile, or robust. Fragile meth-
ods are highly sensitive to any alteration of the container im-
age C’, leading to significant degradation or loss of embed-
ded information M even under minor modifications. Semi-
fragile methods are designed to withstand benign opera-
tions like compression, but fail under malicious semantic
manipulations, such as face morphing or swapping. Robust
methods aim to maintain the integrity of the embedded data
across a broad range of distortions, as signal processing and
geometric transformations, and adversarial attacks, ensur-
ing the persistence of hidden data under diverse operational
conditions.

Capacity: The capacity of a data-hiding system defines
the maximum amount of information that can be embedded
and reliably extracted from a container image C'.

The relevance of these properties varies regarding the
operational constraints of I[CAO-compliant biometric image
certification. In this domain, the invisibility of the embed-
ding is mandatory to avoid degradation of recognition per-
formance and comply with visual quality standards. Blind
extraction is highly desirable to enable decentralized verifi-
cation without requiring access to the original cover image.
Cover-based embedding is mandatory to ensure the certifi-
cation process refers to an authentic biometric acquisition.
Invertibility is also desired to verify the integrity of the em-
bedded message and the cover image after potential ma-
nipulations. Security against unauthorized detection or ex-
traction is desirable to protect the confidentiality of embed-
ded data. Fragile and semi-fragile embedding strategies are
mandatory to enable reliable tamper detection, while robust
embedding approaches are unsuitable as they may tolerate
unacceptable semantic alterations. Finally, capacity must
be balanced to carry necessary certification data without
compromising invisibility or biometric performance: too
little limits effectiveness, while too much may introduce
artifacts due to stronger modifications in cover-based em-
bedding. Accordingly, the remainder of this survey focuses
on data hiding methods that satisfy the operational require-
ments identified above. Figure 2 shows examples of cover
and container image pairs, illustrating these combined re-



quirements for [CAO-compliant systems.

4. Fragile and Semi-Fragile Data Hiding
4.1. Limitations of Traditional Methods

Early fragile and semi-fragile data hiding systems pre-
dominantly relied on traditional embedding techniques op-
erating in the spatial or frequency domain. Spatial domain
approaches, such as Least Significant Bit (LSB) substitu-
tion or histogram modification [9, 10], offered good imper-
ceptibility but were highly vulnerable to benign transforma-
tions like compression, filtering, or even minor noise. Fre-
quency domain methods, relying on transformations such
as DFT [51], DWT [23] or DCT [23], improved robustness
against certain signal processing operations, such as com-
pression, but often suffered perceptual distortion and lacked
fine-grained control over the fragility of embedded infor-
mation [12]. Although these traditional algorithms have
shown effectiveness in specific integrity verification tasks,
their applicability is inherently narrow, requiring expert-
driven design tailored to specific scenarios. Furthermore,
the increasing sophistication of manipulation and removal
attacks compromises their long-term reliability [17].

The advent of deep learning introduced a paradigm shift
in data hiding. Deep neural networks provide adaptable and
generalized frameworks capable of learning complex em-
bedding patterns directly from data. This enables improved
resilience against a broader range of attacks, enhanced im-
perceptibility, and the possibility of dynamically retrain-
ing models to prioritize different objectives, such as ro-
bustness, invisibility, or payload capacity, without requiring
specialized manual engineering [3, 87]. Moreover, the non-
linearity of deep architectures significantly enhances the se-
curity of the embedded information against adversarial re-
trieval attempts. Considering these advantages, learning-
based methods have become a promising direction for de-
veloping fragile and semi-fragile data hiding systems suit-
able for modern biometric image certification under ICAO-
compliant constraints.

4.2. Fragile and Semi-Fragile Watermarking

Recent deep learning-based watermarking approaches
have explored several architectural paradigms that can meet
the operational demands of ICAO-compliant biometric cer-
tification. Those based on encoder—decoder, GANSs, trans-
formers, and INNs have been explored with varying degrees
of success and constitute the predominant design strategies.
Each architecture presents distinct trade-offs between invis-
ibility, robustness to benign transformations, and sensitivity
to semantic manipulations.

Encoder—decoder frameworks represent the foundational
architecture adopted in most modern watermarking solu-
tions due to their conceptual simplicity and flexibility. Typi-

cal implementations employ convolutional neural networks
to embed a carefully controlled payload into cover im-
ages, optimizing embedding imperceptibility while preserv-
ing extraction accuracy.

A seminal method, HiDDeN [87], introduced an end-
to-end GAN framework integrating encoder, decoder, and
discriminator, using adversarial training to embed resilient
watermarks. Despite its innovation, HiDDeN showed lim-
ited capacity and generalization against common signal at-
tacks, prompting further developments. For instance, ARW-
GAN [30] incorporated attention-guided feature fusion and
dense connections within a full GAN pipeline, enhancing
both imperceptibility and robustness. Nonetheless, GAN-
based methods still tend to introduce subtle artifacts during
generation. Furthermore, their emphasis on synthesis rather
than explicit recovery can limit watermark extraction relia-
bility, even under known benign operations.

To mitigate these issues, some methods rely solely on
CNN-based architectures, incorporating discriminators and
adversarial training while minimizing generative compo-
nents. For example, MBRS [32] proposed a robust end-to-
end design against JPEG compression by simulating noise
layers during training. Other works like TDSL [41] and
Adaptor [64] employ a two-phase training and embed-
ding strategy to improve resilience against realistic, non-
differential transformations like JPEG compression. These
methods also allow tunable embedding strength, provid-
ing a more flexible trade-off between imperceptibility and
robustness. Beyond resilience to benign distortions, ap-
proaches such as FaceSigns [46] and WaterLo [5] expanded
their semi-fragile scopes by also including malicious se-
mantic transformations such as face swap within the train-
ing process. This enables the watermark to remain ro-
bust to expected benign changes (e.g., JPEG compres-
sion or filtering) while becoming sensitive to semantic ma-
nipulations. Although CNN-based architectures with dis-
criminators have demonstrated strong performance, recent
transformer-based models have emerged, leveraging atten-
tion mechanisms to embed watermarks in spatially relevant
regions adaptively. StegaFormer [76] and WFormer [43]
have shown significant gains in both imperceptibility and
extraction accuracy, in exchange for higher computational
requirements. Their performance in semi-fragile contexts
suggests promising applicability to ICAO standards.

Finally, despite the versatility of encoder—decoder
schemes and their synergy with adversarial training, they
often suffer from information loss and require precise tun-
ing between robustness and fragility. To address this, INN-
based methods like RIS [39] offer promising alternatives.
Originally explored in steganography, INNs show great po-
tential in ensuring total invertibility and higher impercepti-
bility, key factors for ICAO-compliant systems.



4.3. Fragile and Semi-Fragile Steganography

Initially developed for covert communication, stegano-
graphic methods can be reinterpreted in biometric image
certification to act as fragile integrity markers [18]. By em-
bedding sensitive payloads designed to degrade under tam-
pering, steganography offers a complementary strategy for
proactively detecting unauthorized modifications in ICAO-
compliant scenarios. As in watermarking systems, deep
learning-based steganographic methods adopt a variety of
architectural paradigms, including encoder—decoder frame-
works, GANs, INNs, transformers, and diffusion models.

Encoder—decoder architectures based on fully DNNs and
CNNs [4, 79] provide a standard framework for fragile and
semi-fragile steganography, embedding entire images (high
capacity) into host content while optimizing invisibility and
reconstruction accuracy. These systems, despite targeting
high visual fidelity, inherently exhibit sensitivity to con-
tent alterations, making them suitable for tamper detection.
Variants that incorporate additional embedding constraints,
such as symmetry preservation [36], further refine the bal-
ance between imperceptibility and fragility, strengthening
the potential of encoder-decoder architectures for integrity
verification tasks.

GAN-based steganography enhances invisibility and un-
detectability through adversarial training. Early methods
like SteganoGAN [80] and ISGAN [81] offer good capac-
ity and visual quality but lack robustness to perturbations
such as compression. Recent models, including ADBH
[75], CHAT-GAN [60], and Cover-GAN [40], address this
by incorporating attention mechanisms or perturbation sim-
ulation, improving robustness. However, they still face de-
coding challenges under lossy conditions and limited scala-
bility to high-resolution images [80, 81, 75, 60, 40].

INNs have gained attention in steganography for their
ability to model concealing and revealing as symmetric,
reversible processes [34, 42]. These architectures support
high capacity and imperceptibility, often outperforming tra-
ditional encoder-decoder schemes in preserving image fi-
delity. Recent works have introduced explicit robustness
mechanisms, such as conditional flows [73] or direct em-
bedding in DCT coefficients [39] to improve robustness un-
der distortions like JPEG compression. While computa-
tional demands and invertibility constraints can limit scala-
bility, their capacity to ensure accurate decoding even under
moderate image degradation makes them a promising op-
tion for scenarios requiring integrity and resilience, such as
biometric image certification under ICAO standards.

Transformer-based steganography represents an emerg-
ing direction. Models such as Stegformer [35] exploit at-
tention mechanisms to distribute the payload across seman-
tically meaningful regions adaptively. This flexibility could
facilitate embedding strategies focused on critical biomet-
ric features to enhance tamper sensitivity. However, these

transformer-based models still prioritize payload capacity
and general robustness. Specific adaptations may be neces-
sary to align with fragile or semi-fragile requirements.
Finally, diffusion models have recently been explored
for generative steganography [77, 74], synthesizing entire
images conditioned on hidden messages. Although tech-
niques like DERO [15] achieve state-of-the-art impercep-
tibility and steganalysis resistance, their generative nature
makes them unsuitable for certifying the authenticity of pre-
acquired biometric images, as required by ICAO standards.

5. Comparative Evaluation

The evaluation of fragile and semi-fragile data hiding
methods is structured along four core dimensions: im-
perceptibility, robustness, capacity, and security. While a
broader set of structural properties has been introduced in
Section 3.2 to characterize the behavior of data hiding sys-
tems, this section focuses on the quantitative metrics associ-
ated with the most critical dimensions for ICAO-compliant
biometric certification. Accordingly, each metric must be
interpreted in light of the operational objectives of proactive
tamper detection. The remainder of this section formally in-
troduces the evaluation criteria and presents a comparative
analysis of representative methods along these dimensions.

5.1. Evaluation Metrics

Imperceptibility The visual fidelity between the orig-
inal image C and the container image C’ is critical for
ICAO-compliant biometric images, where any visible al-
teration may compromise recognition performance. Stan-
dard evaluation metrics include Peak Signal-to-Noise Ra-
tio (PSNR) [27], Structural Similarity Index (SSIM) [27],
learning-based perceptual metrics such as LPIPS [82], and
Mean Square Error (MSE). Although high imperceptibility
is essential across all robustness levels, it becomes particu-
larly critical for fragile and semi-fragile methods targeting
biometric certification scenarios [45, 46].

Robustness The evaluation of the ability of a data hiding
method to preserve and accurately recover the embedded
message M from the container image C’ after undergoing
various transformations must consider both benign opera-
tions, such as JPEG compression or resizing [63, 70], and
more severe and malicious alterations, such as adversarial
perturbations [29] or semantic manipulations [45, 70]. The
primary metric for evaluating robustness is the Bit Error
Rate (BER), which quantifies the proportion of bits incor-
rectly recovered between M and M. Lower BER values
correspond to greater resilience of the hidden information
under distortions. In some cases, Bit Recovery Accuracy
(BRA) or normalized cross-correlation (NC) [86] are also
used to assess the fidelity of message retrieval, particularly
under different types of attacks. For fragile and semi-fragile
data hiding tailored to ICAO-compliant biometric certifica-



tion, robustness must be properly tuned: the embedded pay-
load should resist benign signal-level degradations, specif-
ically JPEG compression, but fail when semantic integrity
is compromised [46, 5]. Excessive robustness, as in copy-
right watermarking frameworks [65, 84], would undermine
the ability to detect unauthorized biometric modifications.

Capacity The amount of information that can be embed-
ded within an image is typically measured in bits per pixel
(BPP) [11]. This metric is particularly used in stegano-
graphic approaches, where the objective is to covertly trans-
mit large volumes of data without arousing suspicion. High-
capacity methods enable the embedding of complex pay-
loads such as multiple images [20, 35, 42], encryption
keys, or metadata, but often at the expense of visual fi-
delity. In contrast, capacity could not be the primary goal
in watermarking contexts. However, maintaining a rea-
sonable embedding capacity can offer operational flexibil-
ity, for instance, by allowing individualized watermarking
across users or systems, provided that imperceptibility and
fragility requirements are not violated.

Security The resistance of a data hiding system against
intentional attacks aiming to detect, remove, or corrupt the
embedded message M can be measured in different ways.
Evaluation typically includes resilience against adversarial
perturbations designed to disrupt decoding [85], detection
by steganalysis models [28], watermark removal techniques
[45], and generalization to manipulations not encountered
during training, such as deepfake generation [67] or presen-
tation attacks [22]. Common metrics include bit recovery
accuracy after an attack, steganalysis error rates, attack suc-
cess rates [65], and deepfake detection performance [86].
In deep learning-based systems, evaluations are often con-
ducted under white-box (i.e., the attacker knows the model)
and black-box (i.e., model unknown) scenarios to compre-
hensively assess vulnerability [33, 66]. In ICAO-compliant
applications, security is crucial to ensure that the embedded
data resists unauthorized modifications while remaining im-
perceptible and non-disruptive to recognition systems.

5.2. Comparative Analysis and Discussion

Table 2 offers a comparative overview of state-of-the-
art deep learning-based data hiding approaches assessed
across core properties relevant to biometric image certifi-
cation: imperceptibility, robustness, and payload capacity.
To ensure fair comparison, all methods are analyzed using
metrics reported in their original publications, also consid-
ering their applicability to ICAO-compliant scenarios. For
payload capacity, a similar value is used to facilitate com-
parison rather than reporting maximum capacity. The table
also reports their architecture (e.g., INNs, transformers), the
embedding domain (spatial or frequency), and the hidden
content type.

For each method, imperceptibility is quantified using the

PSNR between the original image (C) and the container
(C"). Values above 40 dB generally denote visually in-
distinguishable changes [53, 58], crucial in the context of
ICAO-compliant facial images, where any visible degrada-
tion may affect both human inspection and automated face
recognition. Several methods, such as HiNet, RIIS, RIS, and
StegFormer, consistently exceed this threshold across mul-
tiple datasets and resolutions, indicating a strong alignment
with ICAO visual quality requirements.

In parallel, recovery fidelity, measuring how accurately
the hidden data can be retrieved, is reported as PSNR be-
tween secret and recovered images or, in the case of bi-
nary string hiding, as the BER. High reconstruction PSNRs
(>35 dB) and low BERs (<0.3%) are indicative of practical
message preservation under distortion-free conditions (e.g.,
[18]). Approaches such as StegFormer, MBRS, RIS, and
FaceSigns demonstrate excellent recovery performance,
suggesting strong potential for scenarios in which embed-
ded information must be reliably extracted post-verification.

Robustness to JPEG compression is reported as PSNR
degradation or BER under compression with quality factors
(QF) of 90 or 50. This form of selective robustness is essen-
tial for semi-fragile watermarking scenarios. In this context,
the “Extra robustness” column indicates whether a method
also preserves the payload under other operations, such as
filtering or geometric changes. While general-purpose wa-
termarking methods typically aim for strong resilience, such
robustness may be counterproductive in biometric certifica-
tion, where fragility to malicious content manipulation is
a desired property. Accordingly, methods that are not ro-
bust to arbitrary transformations are better aligned with the
ICAO-compliant image integrity verification requirements.

Finally, the overall “Grade” column provides a high-
level qualitative indication of each method’s potential suit-
ability in ICAO contexts, reflecting a balanced assess-
ment across imperceptibility, recovery fidelity, robustness
behavior, and compliance with minimum image resolu-
tion requirements (Table 1). While some approaches, like
SteganoGAN or ISGAN, exhibit good imperceptibility, their
lack of robustness and recovery fidelity limits their applica-
bility. Conversely, methods such as RIS and MBRS strike
a more favorable trade-off, suggesting higher compatibility
with the goals of biometric image certification. Importantly,
INN-based and transformer-based designs appear particu-
larly promising due to their inherent support for invertibil-
ity and flexible embedding. While the security property is
a critical dimension in our analysis, a detailed comparative
assessment is challenging. This is because most of the suit-
able methods report performance against generic steganal-
ysis benchmarks (e.g., with detectability rates around 55%
or less using methods like XuNet [71] or SRNet [6]), which
may not reliably reflect the security required against sophis-
ticated, context-aware attacks in real-world ICAO opera-



Table 2. Deep data hiding methods comparison across imperceptibility, robustness, and payload. Underlined values indicate PSNR be-
tween cover/stego images; italicized values refer to PSNR between secret/recovered images. BER denotes the bit error rate (%) between
embedded/extracted messages (before/after) JPEG compression. Asterisk (*) indicates values under JPEG compression with QF=50.

JPG Compression Robustness

P 8 PSNR (dB) | BER (%)
SteganoGAN | CoRR Enc-Dec . O DIV2K/~ 1024 x 1024 38.94/ — B _
180] 2019 (GAN) Spatial | DataHiding | ~,00/ 256 x 256 6 36.33/ — X Lows+
LEW/ 256 x 256 34.63/33.63
ISGAN [81] h;lggp E(‘g/;\DNe)c Spatial | Image Hiding| PASCALVOC/ 256 x 256 8 34.49/33.31 - - X Low
ImageNet/ 256 x 256 34.89/33.42
AAAI Enc-Dec . .
ABDH[75] | ) GAN) Spatial | Image Hiding COCO/512 x 512 ~24 | 3191/3066 | —132.97 - v Low
NeurIPS Enc-Dec . L .
. ; ~ _ *
UDH [79] 2020 (CNN) Spatial | Image Hiding ImageNet/ 128 x 128 24 39.13/35.0 0.0/0.6 v Medium
ACM-MM |  Enc-Dec . Binary String ImageNet/ 400 x 400 . - — — .
MBRS [32] |50 (CNN) Spatial Hiding COCO/ ~ 400 x 400 00039\ 3935, 42.04/— | 0.001210.00063 X High
CVPR - - TmageNet/ 144 x 144 38.05/35.38
ISN [42] 2021 INN Spatial | Image Hiding | p, i Syreet/ 144 x 144 2 404974333 - - 4 Lows+
CVPR Frequenc DIVZK/ 1024 x 1024 48.99752.86
HiNet[34] | 0. INN (];’WDY Image Hiding|  ImageNet/ 256 x 256 ~24 | 44.60/46.78 - - X Medium+
COCO/ 256 x 256 4652/ 46.98
FaceSigns TOMM Enc-Dec . Binary String - - . .
6l o (o) Spatial Hiding CelebA/ 256 x 256 0.00065 36.08/ — - 0321051 v Medium-
CVPR . . DIVZK/ 1024 x 1024 —744.19 —72871 .
RIIS [73] 2022 INN Spatial | Image Hiding |y Nt/ ~ 256 x 256 ~2 L 439774671 (281712853 - v Medium-
AAAI Frequency | Binary String . _ B .
RIS [39] 023 INN e Hiding MSCOCO/ 256 x 256 1 4841/ 4413/ 0.0/0.31 X High+
DIV2K/ 1024 x 1024 437274141
DCT];S;HH l;‘glzvg INN F r(g’;‘f%‘)cy Image Hiding|  ImageNet/ 256 x 256 ~24 | 4031/36.63 - - X Medium+
COCO/ 256 x 256 4030/ 36.55
TCSVT Enc-Dec . Binary String . " s .
Adaptor [64] | % prade Spatial Hiding COCO/128 x 128 ~0.0013 - 3842%/— | —/00I6 v Medium-
DIH-OAIN | TCSVT _ - COCO/ ~ 256 x 256 46,56/ 39.73 .
[28] 2023 INN Spatial | Image Hiding | o g4y v0 0y ~ 256 x 256 |~ 24 54.45/ 48.60 - - X Medium-
DIVZK/ 1024 x 1024 563075545
Steg[];;mer /ZQZ’ZI (Tflzzzfﬁer) Spatial | Image Hiding|  ImageNet/ 256 x 256 ~24 | 4879/49.18 - - X Medium+
) COCO/ 256 x 256 48.77/49.21
Stegaformer | BMVA Enc-Dec N Binary String COCO/ 256 x 256 4337/ — _ 0.32/ — .
[76] 2024 | (Transformer)| SPatid! Hiding DIV2K/ 256 x 256 3 4731/ — 024/ — X Medium-

tional environments. Despite the table’s qualitative nature,
which limits strict quantitative ranking based on application
priorities, it represents the first attempt to systematically
assess the suitability of data-hiding approaches for ICAO-
compliant scenarios. Specifically, reported values across
key properties offer practitioners a valuable basis for select-
ing appropriate methods for specific operational needs. No-
tably, the analysis reveals that only a subset of models meet
the combined requirements of visual conformity, selective
robustness, and reliable decoding necessary for biometric
image certification. These findings underscore the need for
further development of specialized strategies tailored to bio-
metric identity constraints.

6. Conclusions and Future Directions

This survey explored how steganographic and water-
marking techniques can enhance the integrity and trace-
ability of ICAO-compliant facial images, especially where
traditional countermeasures like PAD offer limited post-
capture protection. These methods are particularly rele-
vant in high-risk scenarios such as border control and KYC,
where manipulation attacks like morphing and deepfake at-
tacks pose serious threats. We reviewed core concepts, cat-
egorized existing techniques, and analyzed their suitability

under ICAO constraints, emphasizing trade-offs between
imperceptibility, robustness, capacity, and security. To meet
these demands, deep learning-based fragile and semi-fragile
methods, particularly those using INNs, emerge as the most
promising due to their adaptability and resilience. Based on
this analysis, we provided practical guidelines to support
the design and deployment of watermarking and stegano-
graphic methods in ICAO-compliant systems, identifying
key features for effective integrity verification. Despite
promising advances, the field remains underexplored and
requires further validation. Future research should evaluate
the interaction between embedded signals and face recogni-
tion pipelines, assess resilience against adversarial and se-
mantic attacks, and develop frameworks to verify compli-
ance with ICAO standards. These steps will help bridge the
gap between integrity verification and deployable security
solutions in biometric identity management.
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